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SUMMARY

Background

Most Automatic Target Recognizer (ATR) development and testing has been

conducted in the community without a general means for objectively and
quantitatively evaluating performance. It is clear that the performance of any ATR

is dependent upon the quality of the input signal. For example, as the noise or
clutter in an image becomes increasingly severe, the ATR performance will
correspondingly degrade. Therefore it is important to have an objective and
quantitative measure of image signdl quality by which ATR performance may be

gauged.

Objectives

\The objectives of this work are to provide and validate a means for quantitative
measurement of image signal quality, for use in evaluation of ATR's.

In this work we address the ATR function of detection, as performed by a front-end
region of interest operator or interest point locator. We also treat both targets and

clutter in order to address both true detection rates and false alarm rates.

This work is to provide a limited analysis of existing image metrics. Target-to-

interference ratio (TIR) is the principal metric. Alternate forms of TIR are also
proposed and analyzed.

In addition, a limited validation exercise is performed for the TIR metrics, as well as
for metrics developed under an Air Force contract called Criteria for Target
Recognizer Evaluaiion (CTRE). The validation exercise consists of determining the

degree of correlation between image metrics and the Haar region of interest

operator. Two versions of the region of interest operator are used; both are based onor
Do a Haar detector that is used in the Army Automatic Target Cuer (ATC) ATR. he

emphasis in the validation exercise is to uncover any serious deficiencies i the---
image metrics and rectify those found. . l ±
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Technical Problems

In analyzing image metrics, the technical problems we faced included: (1)

establishing design criteria for the operators used to compute image metrics; (2)
establishing a fully automated algorithm for raw image metrics; (3) establishing a

procedure for taking into account the variable size target image that occurs with
change in target orientation, range-to-target, and sensor depression angle; (4)

taking account of the effect of nearby objects on the TIR values of one another; and
(5) taking into account the effect of a realistic sensor on TIR estimates.

In validating image metrics, the tecpbical problems that we faced included: (1)
rendering the Haar detector and the image metrics to a common base so that

meaningful correlation analyses could be performed; (2) choosing an appropriate

correlation analysis method that would not require assumptions regarding a
mathematical functional form that relates detector outputs to image metiics; (3)

treating" two points of view of the correlation analysis-all possible objects prior to
"Haar detection or, alternatively, only those objects that are actually detected by

Haar; (4) selecting the appropriate measurements for correlation analysis-namely
individual (raw) measurements or aggregate (smoothed) measurements; and (5)

providing a useful validation result within available computer resources.

General Methodology

The methodology employed to solve these technical problems, in the order listed,
involved: (1) development of a Haar figure of merit that is gain and offset invariant,

as are the image metrics; (2) application of Kendall's nonparametric test for rank

order correlation between detector outputs and image metrics; (3) use of a low

threshold on the image metrics for correlation analysis of objects prior to Haar
detection and, alternatively, use of a low threshold on Haar detections for correlation
analysis of objects, after Haar detection; (4) individual (raw) measurements
consisted of each measurement pair of (Haar figure of merit, image metric value)

associated with each individual object, whereas aggregate (smoothed) measurements
consisted of each parametric pair of (average Haar figure of merit, threshold value
on image metric) associated with each subset of objects whose image metric value

exceeded the indicated threshold; (5) given various approximations (regarding image
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metrics and spatial registration of image metric reports with detection reports), the
results obtained were reasonable and served their intended purpose.

Technical Results

The technical results for analysis of image metrics include the following: an

algorithm was established for specifying the size and shape characteristics of the

operators used to extract information for computation of image metrics, taking
realistic sersor characteristics into account. Mathematically, TIR was found to

exhibit an asymmetry with respect to errors produced by a mismatch with actual

target size. A viable post-processing algorithm was developed that is fully
automatic, takes into account the influence of nearby interfering objects, and

produces the desired image metric report for objects of interest (targets or non-

targets).

The technical results for validation of image metrics include the following: Raw and

post-processed image metric maps were produced for 50 images, for two (plus)

metrics. Raw and post-processed Haar detection results were also produced for the

same 50 images, for two versions of the Haar detector. Sixty-four separate data base

correlations were made with image metrics versus Haar detection reports.

Correlation values and confidence levels were obtained for each.

Important Findings and Conclusions

In general TIR correlated somewhat better with Haar than did CTIRE. (The

alternate forms of TIR did not correlate. well.) For correlations against targets only,
the average TIR correlation was 0.94; and the average CTRE correlation was 0.92

(where 1.00 is perfect correlation). For correlations against non-targets only, the

average TIR correlation was 0.79; and the average CTRE correlation was 0.72. On a

single-experiment basis, the differences between TIR and CTRE correlation values

were not significant, except for one case. If one had to make a choice between TIR
and CTRE, TIR should be accepted, primarily on the basis of lesser computational

complexity.

As is evident from these correlation values, a useful relationship has been

demonstrated for both TIR and CTRE as both predictors and explainers of Haar
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detection performance. The aggregate results do not appear to be very sensitive to
the precise shape and size of the operator masks used.

Based on these experiments, as well as prior work in this area, we expect that the
major objective of this effort has been achieved; namely, a means has been provided
and validated for quantitative measurement of isignal quality (for both targets and
clutter) for use in ATR evaluation.
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1. INTRODUCTION

A great deal of automatic target recognizer (ATP) development and testing have
been conducted in the community without a general means for objectively and
quantitatively evaluating performance. It is clear that the performance of any ATR
is dependent upon the quality of the input signal. For example, as the noise or
clutter in an image becomes increasingly severe, the ATR performance will
correspondingly degrade. Therefore it is important to have an objective and
quantitative measure of image signal quality by which ATR performance may be
gauged.

The objectives of this work are to provide and validate a means for quantitative
measurement of image sa!gnal quality, for use in evaluation of ATR's.'

In this work we address the ATR function of detection, as performed by a front. end
region of interest operator or bulk filter. We also treat both targets and clutter in
order to address both true detection rates and false alarm rates.

In this report, we investigate image signal quality metric formulations and concepts,

as well as procedures for applying them to the current application. We also carry out
an image metric validation exercise and show quantitative correlation results

against an actual ATR detection algorithm designed for forward-looking scenarios.

The background for the present study is documented in References 1 through 4. In

Refervrnce 1, preliminary definitions of image metrics were provided. In Reference 2,
calibration runs were made for targets with additive noise. In Reference 3,
correlations were made with an actual ATR designed for down-looking scenarios. In
Reference 4, correlations were made with human detection performance.

In this report, we extend the metric definitions and analyze each metric in greater
depth, bringing general ATR knowledge to bear. Extensive nonparametric

-A- correlation analyses are performed using Kendall's Test to demonstrate the

M effectiveness of the image metrics.

In Section 2 we discuss the work performed in the jormulations and concepts
underlying the baseline image metric. In Section 3 we discuss applications and

m• 11



procedures for obtaining image signal quality metric values for targets and non-

targets. In Section 4 we provide a brief summary of the metrics used in Reference 4.

In Section 5 we provide a detailed description of the validation exercises conducted
against an actual ATR, as well as a summary of the results obtained.

In Section 6 we present our conclusions ai.d ecommendations.
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2. TARGET-TO-INTERFERENCE RATIO (TMR) THEORY AND CONCEPTS

TIR is a measure of image signal quality by which the performance of an ATR may

be objectively evaluated. In this section we briefly describe the history of TIR, its

conceptual genesis in radar signal quality estimation, its extension to imaging

systems, and alternate forms to TIR.

2.1 TIE History

Northrop Research and Technology Center (NRTC) first developed and applied the

TIR metric to image signal qudlity-ieasurement and ATR evaluation in 1980

(References 1 and 2). From the onset, TIR was intended as a simple, straightforward

indicator of signal quality, rather than an elaborate algorithm rivaling the

complexity of an ATR. It was used successfully to evaluate ATR performance on al

IR&D project Northrop Advanced Tactical Seeker (NATS); and later on a

DARPA/MICOM contract Advanced Sensor Signal Processor (ASSP), DAAH01-82-

C-A106 (Reference 3).

Then, in 1983, Northrop Electro-Mechanical Division again applied TIR (and other
metrics) to image signal quality measurement and correlated it with target
recognition performance of humans. This was done on an Air Force contract Criteria

for Target Recognizer Evaluation (CTRE), F33615-83-C-1094 (Reference 4).

2.2 Radar Background

The concept underlying TIR stems from the signal-to-noise ratio (SNR) used in radar

to characterize signal quality.

E(Ps) (2-1)
SNRm Sp'-•

S(PN)

where E(PS) = expected value of received signal (target) power, and

S(PN) = standard deviation of additive noise power.
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In this expression the assumptions are that

E (PN) = 0,

S (PN) = S (Ps) or S (PN) > > S (Ps),

and the samples are independent.

A more general form would be:

SNR E(Ps) - E(PN) (2-2)
S(PN)

for non-zero mean noise and E (Ps) > E (PN).

The SNR is used to indicate the level of difficulty in extracting the signal from the

noise; in particular, the probability of detecting the signal is a monotonically
increasing function of SNR:

Pr (Signal Detection) ( SNR (2-3)

where the symbol "( "is used to denote a positive monotonic relationship.

In the presence of clutter (or even another close-by target), an important influence
on signal quality is the interference caused by such objects. When the influence of

clutter dominates over the influence of noise, an analogous expression has been used
in radar, namely signal-to-clutter ratio (SCR).

E (Ps) - E(PC) (2-4)
S(Pc)

where E(Pc) = expected value of the clutter power,

S(Pc) = standard deviation of the clutter power,

and E(PS) > E(Pf).
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When both clutter and noise interfere with signal detection, the combination of the

two is termed "interference." For additive noise, the composite power of the

interference, P1, is modeled as the noncoherent sum of their powers

PI = PC + PN.

So analogously, the signal-to-interference ratio (SIR) is given by

E(PS) - E(PI) (2-5)
SIR S(P

where E(Ps) > E(PI)

For noise only, SIR reduces to SNR; anid for clutter only SIR reduces to SCR.

2.3 Extension to Imaging Electro-Optical Systems

In both FLIR and television systems, the output image is noncoherent and the

display's brightness is a monotonic function of the incident power on the collecting

optics. However, unlike the radar case outlined above, the signal is usually not

reprcsented by a single point measurement (i.e., a single pixel). Instead it is

represented by a collection of more or less connected pixels corresponding to a target

image.

If we know a priori the target size to be expected, we can improve the signal quality

by bandpass filtering the spatial frequencies corresponding to a target (analogous to

a radio receiver tuning to an expected portion of the radio frequency band).

So, for example, if a target is expected to have a length ? and a height h, a spatial
filter or mask can be defined which matches the expected target dimensions; and,

under the hypothesis that a target is present, an associated spatial filter or mask can

be definud which samples the clutter and/or noise in a neighborhood around the
hypothesized target. The combination of these masks is shown in Figure 1. A guard
region may be defined between the target mask and the background mask to reduce

the chance of mixing samples of target and background, which would tend to

increase the error in parameter estimation for each population.

Since, in the case of electro-optical (E-O) imagery, the spatial filtering is matched to

expected target dimensions, this lead us to adopt the usage of "target" in place of

0 15
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Background Mask

Guard Region _

Target h
Mask

Fiur . SptaFle

T--- -- T

ipT pBI(2-6)

TIR - '~
oB

where PlT r-- the average value of the pixel intensities (or grey levels) in the

target mask,

PB - the average value of the pixel intensities in the background

mask,

and cB - the sample standard deviation of the pixel intensities (clutter

+ noise) in the background mask.

This expression can also be thought of in terms of contrast relative to the mIan

background level, which could be expressed as

I average target contrast 1 (2-7)TIR =
background standard deviation
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In Eq. (2-6), the assumption is that the standard deviation of the target pixels, UT,

does not affect target detectability. (This assumption will be addressed at length in
later sections of this report). TIR is basically the z-score of the average target

intensity relative to the background population; also (ITR)2 is the Mahalanobis

distance of the average target intensity from the background population.

2.4 Alternate Forms to TIR

There are several shortcomings with Eq. (2-6) and the assumptions underlying it.

On the other hand, in defining an image signal quality measure, we originally set

out to establish a straightforward, simple indicator, rather than an elaborate

algorithm. So, as long as the shortcomings are understood, and are not of a

catastrophic nature, the TIR metric may still serve the intended purpose. The

following discussion describes the TIR shortcomings.

First, as the standard deviation of the background, OB, approaches zero, TIR

approaches infinity. It is possible that with a uniform background and Onoise <
quantization step size, GB could be computed as zero. If such an event were to occur,

the logical thing to do would be to substitute a finite value for MB, say c'B, that is

consistent with the uB estimate of zero and the quantization step size, while

preventing TIR from becoming excessively large.

Based on an analysis in Appendix A, ""Estimate of OB for TIR When Limited by

Quantization Step Size," a reasonable value for u'B is 0.24 of a grey level. It

represents an upper bound for six cases covering different population sizes, uniform

and normal distributions, for 90% and 99% confidence intervals.

Another shortcoming for which there is no simple remedy is the case where the

numerator of Eq. (2-6) is zero and, therefore, TIR is zero, even though one can clearly

discern the target against its background. Other forms such as the Bhattacharyya

measure have been considered for elimination of this shortcoming; however, due to

time limitations, this alternative form was not investigated.

Also if either the background or target pixel intensities do not come from a normal

distributicn, say they are multimodal, then the parametric form of Eq. (2-6) may be
misleading. In such a case, nonparametric measures are more appropriate such as

the general Bhattacharyya measure or a Kolmogorov-Smirnov (K-S) type of test.

17
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These alternatives are not simple changes to make. However, some of the CTRE

metrics are already based on K-S tests; consequently, it would be interesting to
compare CTRE results with TIf results for such cases.

Spatial correlation of pixels in FUIR imagery is the rule rather than the exception.
However, estimates of PT, PB, and aB are made for TIR, based upon the assumption of
independent samples. At the present time, we are not sure of the full effect this has

on TIR estimates. One effect, however that this would surely have is on the
confidence interval about TIR estimates. This would also tie in with understanding

the effect that target size has on TIR. If, for example, the target consists of only two
or three independent pixels, then the confidence intervals will be large, and,

therefore, the detectability will be uncertain, even for a high-contrast target.

Another potential shortcoming of TIR is that the standard deviation of the target
pixels, GT, is not included in Eq. (2-6). Under the assumption of normal
distributions, perhaps the appropriate formulation for TIR which includes OT would

be

TIRPT - lB[ (2-8)
new 2 +a 2B

From a theoretical point of view this has more appeal than Eq. (2-6), since it forms a
valid test statis'dc for testing the hypothesis that there is no significant contrast

between the populations of target pixels and background pixels. Extending this

idea further, another alternate form is suggested, namely, CONTRAST.

T n B

where nT = number of target pixels,

nB= number of background pixels,

Z. = the value of standard normal deviates which correspond to the =

confidence level. (See Appendix B for more detail.)

CONTRAST represents a conservative (lower bound) estimate of the true contrast.

The way in which Zz is used to determine this lower bound is shown with an

18
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illustrative example. Suppose, as we did in this study, that the lower bound of the
95% confidence interval were desir.-,. Then Z. is the value of the normal deviate
(zero mean and unit variance) such that 97.5% of the standard normal distribution is
larger than Zx. Using the table of standard normal deviates, one finds a table entry
of 0.475 (95.0/2). Th!,-, corresponds to a value for ZK of 1.96. This would be
substituted in Eq. (2-9) to determine the value of CONTRAST.

19
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3. TIR APPLICATION AND PROC~EDURES

In the application of TIR to actual imagery, there are a number of practical
considerations:

a. How should the triple-gate TIR mask be designed?

b. How should TER be applied?

C. How will variable target size and variable target aspect angle within a

frame affect TIR? -

d. How will nearby objects affect local TERi estimates?

e. How will the sensor point spread function affect TIR?

In this section we will address each of these questions. First we will review how
these were addressed in work done prior to this study. Then we will describe
important differences regarding image metrics for our current application versus the
prior work. Finally, taking all thesee considerations into account, the procedure for
computing TIR for this study is described.

3.1 Previous A]2plication

Our work on TIR in the early 1980's established a standard approach for each of
the above questions, except for questions d and e. Our approach on this project builds
upon that experience. What had been done previously applied to a top-view scenario
for a limited altitude intervs'. in which the targLe size would vary by no more than
± 15%.

For that scenario, the size of the innermost gate was chosen to correspond to the
expected target size; and the guard region was chosen to exceed the maximum target
size for any target rotation. The nominal target used for these estimates was a tank
since it was the most imuportant target type. A set of eight masks, at rotation
intervals of 22-J. deg, formed a filter bank. Each filter in the bank was applied as a
convolutional operator over the whole frame. At each pixel location, the maximum

20



output value across all eight filters was selected as the TIR value reported for that
pixel.

This approach was susceptible to contaminated estimates of PT. This could occur

whenever the target was smaller than the innermost gate or whenever the target
rotation angle was other than a multiple of 221 deg. pB and oB, however, were never

contaminated, unless an extremely long truck happened to be the target. This mask

design never appeared to cause a very significant problem in obtaining a reasonable
estimate for TIR.

An interesting phenomenon that is worth mentioning at this point is that very often

the peak TIR value for a targt; 4oulfot__. occur when the TIR mask was centered on

a target, but would be offset (within the target interior though). The cause of this

phenomenon often was nearby interfering objects which produced a larger value of

cFB (and, therefore smaller TIR) when the TIR mask was centered on the target than

when it was off center.

There were, however, two types of problems in which our TIR formulation and/or

mask design did not produce consistent results with respect to actual ATR detection

outputs. These were: (1) targets parked adjacent to high contrast extended clutter,

and (2) very-low-contrast targets or very-high-contrast targets. In case (1),

apparently the clutter caused OB to be large, and this in turn caused TIR to become

exceedingly low. In case (2), as compared with ATR figures of merit, low-contrast

targets in competing clutter yielded extremely low TIR values; and high-contrast

targets in benign clutter yielded extremely high TIR values. This lack of

correspondence at extreme ends of signal quality was attributed to TIR being very

simple. As compared with the ATR, TIR was not as good at detecting weak targets,

and its quality measure was easier to satisfy with only moderately strong targets.

There was also a procedural problem with mapping pixel-level TIR outputs to higher

object-level TIR values. The procedure that was followed was to perform spatial

clustering (or coloring); then, by visual inspection, certain clusters were eliminatedbased on: (1) sizes ýhat were signif-:aatly larger than the typical target response or

were single-pixel responses; and (2) aspect ratios that were much larger than those

of typical target responses. By probing pixel TIR values in a neighborhood, an

estimate of the peý. k TIR value was obtained within each surviving cluster and was

then reported as the object TIR value. In some cases, where a target cluster merged

I 21
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with the cluster of adjacent clutter, the estimated peak TIR value in the vicinity of

the target was reported as the target TER.

3.2 Current A~Plication

Turning to the application at hand, we have forward-looking scenario in which the

range-to-target within a single frame can vary considerably, depending on the

depression angle of the sensor. And, even at a specific range-to-target, the apparent
target horizontal extent can change by 100% as the target heading changes from

end-view to broadside. The probilem, is further complicated by the projection from
three dimensions to two dimensions, with considerable target variability occurring

in the vertical direction of the display. For this scenario the characteristic target

dimensions are projected length ? (horizontal direction) and projected height h
(vertical direction).

In order to design the TIR mask to best match the target size and shape, while

TIR estimates, it was necessary to conduct an analysis of the effect of contamination

ofthe target region by background pixels, and vice versa. This analysis is described

inAppendix C, "tSensitivity of TIR to Target Size Estimation Errors." The

conclusion of this analysis was that the impact of contamination is asymmetrical for

the original TIR form of Eq. (2-6).

For example, suppose the ideal TIR is 3.16. Then for the case where 10% of the target

* 1 region contains background pixels, Tifi would be underestimated by 10%. On the

other hand, for the case that 10% of the background region contains target pixels,

* TIR would be underestimated by 34%. In general, in either case, TIR would be

underestimated. From this analysis one would conclude that it is more costly to

contaminate the background region than the target region.

Reinforcement of this conclusion arises from consideration of the frequently

occurring imaging infrared phenomenon, in which the range of intensities of target

pixels is often quite broad and contains the range of local background intensities.

Thus, contamination of the background region by target pixels is much more likely

to significantly influence the estimates for PB and uB, than would contamination of

the target region by background pixels influence 1,he estimate Of PT.

22



Consideration was also given to making the estimates of pB, PT, and aB more robust,

i.e., less sensitive to contaminaticn. (See Appendix D, "Robust TIR.") However, it

was concluded that it would not be a suitable approach because it would eliminate or

reduce the true influence of a target "hot spot" or a bimodal background on ATR

target detectability. These are obviously important phenomena that should not be

suppresse . Therefore, a robust TIR was rejected as a possible alternate approach.

The premise of designing the TIR mask that best matches the target size and shape

was then re-examined. As previously described, the TIR mask definition included a

guard region to protect against, or diminish, the effects of mixing target

(/background) pixels into the baokgrcrnd(/target) region. This approach to solving

the problem of population mixing makes sense when the target size and shape are

known a priori to a fair degree of precision (as was the case of the top-view,

constant-range scenario of NATS/ASSP). In such cases, rejecting a ring of one or two
pixels between the target region and background region would be expected to

improve the TIR estimate.

Unfortunately, in our current application there is a great deal of variation of target

size and shape and a great deal of uncertainty about the size and shape expected for

any given target; so it is unlikely that an effective guard ring can be modeled.

The original modeling done for the TIR mask also considered only geometric factors.

The effect of the sensor point spread function was therefore not taken into account.

From the TIR point of view, the sensor point spread function has the effect of

smearing an image, as compared with an ideal geometric representation. This

smearing causes adjacent pixels to share intensities. As a result, pixels within the

target's geometric extent and pixels outside of the target's geometric extent share

their intensities. The closer they are, the more sharing will take place. Figure 2

illustrates the effect of a point spread function on an ideal rectangular waveform.

In general, the wider the point spread function, the more difficult it will be to

discriminate targets from their backgrounds.

If we now re-examine the role of a guard region, it is no longer clear what should be

considered exclusively target region and what should be considered exclusively

background region. And even if we utilized a large guard region which excludes
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Figure 2. Effect of a Point Spread Function

most of the target/background mixing, such a guard region would also hide the effect

on target detectability of the width ofthe point spread function.

Taking these factors into account, it was decided that we would compute TFIR without

using a guard ring; we would use a bank of masks that have only two regions: target

and background. The mask sizes and shapes would be designed to include a target
region at least as large as the largest possible target size. This approach allows for at

least one mask that attenuates the effect of target pixels contaminating the

background region (the most serious type of error in 'FIR estimation). The maximum

TIR over all the masks is then reported as the TIR value for the pixel corresponding

to the center of the masks.

3.3 Adopted Procedure

Taking the foregoing considerations into account, the procedure for computing TmR

for the current scenario is as follows: A bank of nine parametrically range-scaled
filters is defined, one for each of nine target headings, from head-on aspect through
broadside aspect. At a specific range and at each aspect angle, the rectangular

target region is designed to include the largest target projection, and by
complementarity the background region is designed to exclude the largest target

projection. All nine masks are applied at each pixel location, since it is not known a
pro_ what the target headings are going to be. The largest TER computed among

the nine is then selected as the reported TIR value.

As the estimated range-to-target changes, the filters are scaled to reflect the
expected target size, within a specified range interval of interest. The result of
applying the TIR bank of filters is a map of TIR values defined at each pixel.
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For purposes of illustration, examples are shown in Figures 3 through 5 of an
original grey-level image, an image showing ground-truth target regions, and the
corresponding TIR map. (Although this TIR map was obtained using only a single
TM filter, rather than a bank of filters, its qualitative appearance is identical to the
filter bank output).

The next step is post-processing of the TIR map to determine the maximum TIR
value within the spatial extent of each target-sized object. We have deviloped an
automated method for extracting the maximum object-level TmR value. This mnethod
utilizes the "max operator."

Given a maximum projected target size of height h and length C, the TIR map is post-
processed first by a 1 x f nonlinear convolutional mask that outputs the maximum
TmR value contained within the I row by E columns. This results in a new map which

* is then convolved with another max operator of dimension h x 1. It outputs the
maximum value within its h rows by 1 column.

The final result is a max TIR map compof.td of rectangular plateaus of constant
(max) TIR values. Figure 6 shows results from post-processing Figure 5. Each
plateau corresponds to a local maximum TER value. The center of each complete
plateau is the location of the pixel in the original TiM map with the local maximum
TIR, and the TIR. value of thc plateau is, in fact, the value of the local maximum TIR.

This post-processing algorithm completely disassociates target-size objects with
larger TIR values from objects with smaller TIR values. Since targets usually have a

larger TIR value than nearby clutter, this is a desirable attribute. If, on the other
hand, an object of interest has a smaller TmR than another, nearby object, then its
plateau may be partially masked by the plateau of the other object. (In this case the

center of the lower TIR plateau will not be the location of its source.) If a plateau

does not contain its own source point, then there is an object within half the target
dimension that has a larger TIR. In this case the partial plateau is rejected. If,
however, a plateau does contain its own source point, it is retained.

The efficiency and objectivity of this post-processing algorithm is a significant

extension of the previous methodology for estimating image signal quality.
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4. BRIEF SUMMARY OF CTRE METRICS

In addition to TIfi and TIR-related metrics, we also considered metrics developed
under the CTRE project. (For full details see Reference. 4.)

The CTRE technical approach consisted of (1) proposing an initial set of candidate

metrics based on established hypothesis tests computed on ar image window and (2)
performing regression analysis of human subjects' target detection scores versus
alternative subsets of candidate metrics. By demonstrating the ability of metrics to
predict the probability with which targets are detected by humans, it was expected
that they would be useful for predicting ATR performance. In the end, four of the
original eight metrics (based on contrast'or edge-gradient magnitude) were found to
account for 91 percent of the variation in the human subjects' detection performance.

Initially, regression analysis was performed against individual local image metrics.
Many of the metrics were found to have significant regression, but no individual one

was found to be an adequate predictor. Later research focused on multivariate

regression analysis and variable subset selection procedures.

The multivariate regression analysis consisted of: (1) evaluating alternative subsets
of the metrics; (2) filtering the experimental data to suppress outliers; and (3)

performing weighted least squares regression on the filtered data to produce the

final model.

The fitting of human performance scores with a simple linear regression model posed

severe technical problems with respect to outliers. However, instead of judging
which data points were outliers and rejecting them from the regression analysis

prior to demonstrating any significant regression, a method of soft rejection based on
"robust" regression techniques was employed. This was followed by the application

of weighted least squares.

A diagram illustrating this procedure is shown in Figure 7.

The regression model for probability of detection, PD, that resulted from this
procedure is given by

PD - 0.3 + 1.08mi + 0.072m2 + 0.794m3 - 0.807m4, (4-1)
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where mi = Normalized Chi2 test on grey shades (measures the frequency
and degree to which target and background grey shade
histograms are dissimilar),

m2 Normalized Kolmogorov-Smirnov (K-S) test on edge
gradients (measures the probability that the target's gradient
distribution tends to have stronger gradients than that of the
background),

m3 = Normalized (TIR)2 (measures the squared ratio of the contrast
between target and background to the standard deviation of
the background),

and m4 = Normaliz6d K-91test on grey shades (measures the probability
that the target's grey shades tend to be lighter than those of
the backgrcund).

S DATA BASE:
METRIC VALUES,..

HUMAN DETECTION
ESTATISTICS

I CANDIDATE CMOETSELECTED METRICS

M ET RIC S. A N A L YSI

REGRESSION
MODEL RESULTS

Figure 7. PROCEDURE FOR DETERMINING REGRESSION MODEL FOR PREDICTION OF
DETECTION PERFORMANCE AS A FUNCTION OF IMAGE QUALITY
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(Because the metrics are correlated to some extent, the coefficients shown do not
necessarily indicate the degree or sense of their correlasion with PD.)

Each metric is conditioned on target and background samples that lie in the
innermost and outermost portions of a mask that is centered on the target. Two
forms of masks were used. One form is a triple-gate mask that was used for grey

shades. The other is a double-gate mask that was used for edge statistics. These are
shown in Figure 8. The rationale for using two types of masks is as follows. In the
case of grey shades, the triple-gate mask was adopted from the earlier work done at
NRTC. Li the case of edge statistics, it was found that the major edge responses

occurred outside the target region anid in the guard region. Therefore, the target
region was expanded, and the guard region was eliminated.

BACKGROUND BACKGROUND

GUARD

TARGET

(a) For grey shades metrics (b) For edge-based metric m2
n1l, M 2 , and m 4

Figure 8. TARGET AND BACKGROUND SAMPLING
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5. IMAGE METRIC VALIDATION

The objectives of the imagL- metric validation are composed of three parts: (1)

validate TIR and CTRE approaches for prediction/evaluation of the Haar region of
interest operator; (2) detect any flaws or weaknesses in TIER and CTRE; and (3)

modify/select the most promising approach.

The primary intent of the validation effort is to determine whether anything is

basically wrong with TIR (or any of its alternate forms) or CTRE, in terms of

correlating with the Haar region of interst operator. Precise values of functions are
not needed for this purpose. Therefore, in the interest of efficiency, approximations

were made concerning the matching of image metric mask sizes with target sizes,

sampling of the image data base, and the form of the correlation metric. The
approximations were adequate to determine basic trends and the relative merits of
image metrics. (When Project Task 2.2, Characterize Data, is performed, the full

treatment for variable target sizes and shapes will be carried out, and more

extensive sampling of the image data base will be conducted.)

The underlying assumption in correlating results from different algorithms

(including image metrics and region of interest operators) is that the information

being extracted by the algorithms is correlated. In the case of military ground

vehicle targets, this may not be an unreasonable assumption. However, in the case

of natural clutter, there is much more variety of types of objects, as well as

variability within each type, compared with military ground vehicle targets. One

would thus expect a lower degree of correlation, if any, between algorithms for

natural clutter than for targets.

In this major section of the report we first present our approach in Section 5.1. Here

we describe our basic approach (Section 5.1.1) which consists of viewing the problem

very generally. This includes the rendering of Haar outputs and image metrics to a
common reference before attempting a correlation analysis. Two types of correlation

analyses are defined (a priori and a posteriori); and two types of data (raw and

smoothed) are defined.

Next in Section 5.1.2 is described the imagery selected for the validation exercise. It

consists of two data subsets. One for large targets; the other for small targets. There
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are twenty-two images for the first subset and twenty-eight images for the second

subset.

The two types of Haar detection reports that were used for validation of the image

metrics are described in Section 5.1.3; they are: (1) the ATC Haar FOM; and (2) the

Haar FOM.

The four types of image metrics that were correlated against the two types of Haar

detection reports are described in Section 5.1.4. These consist of: (1) TIR, (2) TIRnew,

(3) CONTRAST, and (4) CTRE.

The method that was used to registetrHaar detection reports with image metric

reports is described in Section 5.1.5. And the technique for mathematically

correlating Haar reports with image metrics is described in Section 5.1.6.

The results of correlating the two types of Haar detections with the four types of

image metrics, for both raw and smoothed measurements, for both a Priori and a

posteriori conditions, and for both large and small targets are presented in Section
5.2.

5.1 Approach

The approach we have taken is described in six parts: (1) Basic Approach; (2)

Imagery Selection; (3) Haar Detection Reports; (4) Image Metric Reports; (5)

Registration of Reports; (6) and Correlation Analysis.

5.1.1 Basic Approach

Our basic approach is to determine to what extent various candidate imagery
metrics correlate with the Haar region of interest operator. This requ;res a
rendering of the responsis of the region of interest operator and the imagery metrics

to a common reference, both spatially and in magnitude. Once this is accomplished,

the two responses may be correlated. The type of correlation required is a positive

monotonic relation; in other words, as the magnitude of the Haar response increases,

the magnitude of the image metric also increases. The frequency with which this

occurs over a number of sam.Dles is a measure of the degree of correlation.
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Two points of view may be taken of the correlation analysis. One is to consider the

sample set as the set of actual detection reports. This can be called the a posteriori

correlation-that is, after detection. The other is to consider the sample set as the set

of all possible detection reports. This can be called the a priori correlation-that is,
prior to detection.

The utility of each point of view is as follows: The a posteriori viewpoint is useful for

evaluation of the reliability of detection reports, including ranking of detections by a

detector figure of merit (FOM). The a priori viewpoint is useful for evaluation and/or

prediction of detection performance, for example, in terms of an operating

characteristic curve (See Figure 9). These viewpoints are consistent with the current

descriptions of "probability of detection report reliability" and "probability of

detection" advanced by the Automatic Target Recognizer Working Group (ATRWG)

'Target Recognizer Definitions and Performance Measures" (Reference 5). Both

viewpoints are treated in the correlation analysis reported herein.

The most common use of image signal quality measures will be to develop operating

cuives showing ATR detection performance for signal quality levels above some

minimum. Such information is useful for sensor system designers and system
analysts. This implies that integral measures such as probability of detection and
probability of false alarm for image signal quality levelIs above some specified

thresho1  value are of most interest, rather than raw density measures such as

detectability of individual objects for a specific image signal quality value. In this

work qe refer to the integral measures as smoothed values and the raw density

mea.. 's as raw values.

5.1.2 _Marory Selection

To achi -, the objectives described above, it was unnecessary to process and analyze

our entire data base. To minimize required processing time, it was decided that a
single size filter would be used for each frame, although it would be scaled from one

frame to another frame. A survey of the available imagery, Texas Instruments (TI)

imagery, supplied by the Environmental Research Institute of Michigan (ERIM),

indicated that there were many images such that, within a given image, the
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Figure 9. TYPICAL CHARACTERISTIC CURVES

maximum difference in target vertical extent was less than a few rows and the
maxmu dffrecein hrznaexntwsless than few columns.

We first partitioned the data into a subset (later~ referred to as the Large Target
Validation Data Base) in which for each image selected, the following criteria were
met:

(1) Targets within each image do not vary in size by more than five
pixel rows in height and five pixel columns in width.

(2) At least one target in each image has an area between 100 pixels
and 600 pixels.

The area for each target is obtained from word T-34 of the ERIM target metrics
appended to the ATRWG header of each image (Reference 6). Word T-31 of the
ERIM target metrics was used to determine target height (vertical), and word T-32
was used to determine target width (horizontal).
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The resulting Large Target Validation Data Base consists of the following

22 images (Table 1):

Table 1. LARGE TARGET VALIDATION DATA BASE

ERIM Tavpe Number ERIM Imarve ED Northrop Image ED

3002-11 -2669012 202104
3002-11 2018976 202126

3002-11 2010007 205128

3002-11 2003042 203134
3002-11 2008023 205136
3002-11 2027029 202142
3002-11 2007042 203143
3003-11 2010061 201203
3003-11 2009010 203905

3003-11 2010012 202226

3003-11 2012074 203228
3003-11 2008010 203235
3003-11 2007076 202243

3004-11 2027057 203301
3004-11 2007013 202333

3004-11 2003044 202334

3004-11 2014027 203335

3004-11 2017010 203340I3004-11 2007045 201342
3004-11 2007028 202343
3004-11 2027007 2053"

This data base contains 63 targets.
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To prevent drawing conclusions on the basis of only large targets, a second
validation data base was later partitioned for small targets. Each image in this data

base was selected according to the following criteria:

(1) Targets within each image do not vary in size by more than

three pixcel rows in height and five pixel columns in width.

(2) At least one target in each image has an area between 15
pixels and 30 pixels.

The resulting Small Target Validation Data Base consists of the following

28 images (Table 2):

Table 2. SMALL TARGET VALIDATION DATA BASE

ERIM Tape Number ERIM Image ID Northrop Image ED

3002-11 2012007 204111

3002141 2016003 207112

3002-11 2015032 210118

3002-11 2015046 209122

3002-11 2014040 210130

3002-11 2008051 207137
3002-11 2003048 209138
3002-11 2007048 210145

3003-11 2013013 206206
3003-11 2006032 210C07

3003-11 2016000 209212

3003-11 2016032 210222

3003-11 2010901 205216

3003-11 2008067 207241

3004-11 2009000 210239'
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Table 2. SMALL TARGET VALIDATION DATA BASE (Conted)

ERIM TaD.Nme RMJaeI Northrop Imame ID

3004-11 2012032 210312
3004-11 2009032 210317

3004-11 2010019 206329

3004-11 2012048 209330

3004-11 2006003 206337

3004-11 2008048 209330

3004-11 2008016 210339

3004-11 2017000 210341

3004-11 2007019 207345

This data base contains 83 targets.

5.1.3 Haar Detection Reports

As mentioned in Section 5.1.1, correlation of image metrics with the Haar region of
interest operator requires a rendering of the Haar responses to a common reference
with the image metrics. All the image metrics (except for CONTRAST) are
invariant with sensor system gain and offset. They are also local metrics that are
independent of large-scale scene content. The image metrics are also post-processed
to map them from the pixel-level to the object-level (as described in Section 3.3).

Considering the correlation of Haar responses with image metrics, we first of all note
that the ATC Haar output is not a measure. It is an event: detection or no detection.
However, prior to making the detection decision a continuous-valued measure or
figure of merit exists; this is the raw Haar filter output. (See Appendix E.)
Unfortunately, as the sensor system gain changes, a corresponding change results in
the raw filter output. To produce an Haar output that is gain and offset invariant,
like the image metrics, a normalization is performed yielding the Hiaar Figure of
Merit (HFOM). (The HFOM is described in Appendix F.) The HFOM is defined at
the pixel level. So some post-processing is required to produce reports at the object
level.
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In these analyses two types of Haar outputs were used to correlate against image

metrics. One type was the current ATC Haar output, with a figure of merit

appended, referred to as ATC Haar FOX In this case, the detection decision is based

only on the current ATC Haar logic. ATC Haar thresholding logic is based on a

percentile threshold that varies with estimated range. (See Appendix E for details.)

It determines the region for which an HFOM value is to be obtained. The other type

of Haar output to be used for correlation with image metrics was the result of using

the HFOM value as the detection variable; this type of output is referred to as Haar

FOM. In this case the HFOM is computed at every pixel to form an HFOM map. A
simple threshold set at HFOM =-O.3SOjs then applied to determine pixels of interest.

In either case, these are then post-processed by applying a 3 x 3 max operator
(corresponding to 6x6 in the original image) to obtain the local maximum HFOM

value to be used in the subsequent correlation analysis.

For both types of Haar output, moderately low detection thresholds were used.

Thresholding was performed for two reasons: (1) to limit the number of samples so

that the number of sample detections would not be computationally excessive; and

(2) to restrict the problem to an interesting domain in which most targets are

detected, without being swamped with false alarms. No significant effect on the

correlation analyses should result from this thresholding. Over the Large Target

Data Base and the Small Target Data Base, the thresholding resulted in

probabilities of detection of 92% and 70%, respectively, for ATC Haar, and 98% and

78%, respectively, for Haar FOM. Table 3 shows examples of Haar detection lists for

the same frame.

5.1.4 Image Metric Reports

Initially four image metrics were investigated: TIR, TIRnew, CONTRAST, and

CTRE (PD). These were defined in Eqs. (2-6), (2-8), (1-9), and (4-1).

For any one of the non-CTRE metrics, the way in which the metric value was

obtained for this validation exercise is the same as that described in Section 3.2 and

3.3, except that only a single mask was used for each image, although it was scaled

in size from one image to the next (as described later). For CTRE, the mask used for

0 38



-O 4

I

ji l~i tpL"lk

II

j AS

aa,

93



each of the elemental metrics was as described in Section 4. They too were kept
constant for a given image, but were scaled in size from one image to the next. For a
double-gate =ask, the procedure followed in determining the inner gate (or target
region) dimensions is as follows. For a given image, the target with the maximum
width (known from ground truth) was chosen as the reference target. The inner gate
dimensions were then scaled to match those of the circumscribing rectangle about
the reference target. For the outer g ate (or background region), the dimensions were
made equal to the integer value closest to V2~ times each dimension of the inner
gate. Thus, the number of pixels in the outer gate (V2 -e eNv'2 w - tw = ew) is
approximately equal to the numbler of pixels in the inner gate.

By choosing the inner gate to correspond to larger (often, the largest) target in a
given image, we intended to minimize the error in estimating TER, while utilizing a
single mask per image. (See Appendix C concerning the larger TIfi error associated
with contaminating the backg round region with target pixels.)

For OTRE metrics that use a triple-gate mask, the outer dimensions of the guard
region were chosen to match the reference target's circumscribing rectangle; that is,
HIG = h and LG = .The innermost (or target) region dimensions were then chosen
to be HI = HG-2 and Li = LG-2. The outermost (or background) region dimensions
were chosen to yield an area equal to the target region, or H0L0 - HGLG = HILI, such
that H0 exceeds HG and LO exceeds LG by a fixed amount, x; x can be determined by
substitution and application of the quadratic formula.

An analysis was made of the relative differences in the areas of circumscribing
rectangles about targets with respect to the area of the reference rectangle. The
results are shown below in Table 4.

From this analysis one can see that the typical relative error in area is less thanI - 23%. From the sensitivity analysis in Appendix C, one would expect that the
typical error in TER would be biased downward by less than 23%. This was deemed
acceptable. However, in the case of the two small targets that were larger than their
references, their TER values may be considerably more depressed below their true
values. This could produce significant errors in the correlation analyses, therefore,
for purposes of this validation exercise, the images containing these two targets were
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eliminated from the correlation analysis. These were ERIM Image I.D. Numbers
2016003 and 2016032.

TABLE 4. RELATIVE DIFFERENCES IN TARGET AREAS

WITH RESPECT TO REFERENCE TARGETS

Data Base Large Targets Small Targets

Sizeof Rec0•• Number Average Relative Number Average Relative
Difference in Area Difference in Area

Smaller than Reference 59 -0.16 81 -0.23

Larger than Reference 4 + 0.15 2 + 0.50

For each metric, after generating the pixel-level metric values, post-processing is

performed as previously described in Section 3.3. From this, a list of object-level
metric values is produced consisting of all plateaus that contain their own maximum

source point. As in the case of the Haar outputs, a low image metric threshold is
imposed on the raw metric value to limit the number of reports while still including

weak targets. (In fact, 100% of the targets were included.) This was done for the a

Driori analyses. In the case of the Large Target Validation set, the thresholds for
TIR and CTRE were set at 1.07 and 1.03, respectively; and for the Small Target
Validation set, they were set at 0.82 and 1.01, respectively.

Table 5 shows examples of TIR and CTRE lists for the same frame.

5.1.5 Registration of Haar Detection Reports with Image Metric Reports

In the case of targets, to associate Haar detection reports with image metric reports,
use was made of the ground truth location of each target. Given its location (xt,yt) a

search region of {(x,y)}, such that
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and

is defined in which the largest image metric value is used and the largest HFOM is
used. (Targets whose image metric value is zero are deleted from the correlation
analysis since the apparent signal q~uality is extremely low and no meaningful
contribution would be madie to the correlation analysis.)

In the case of non-targets, for the a posteriori aualysis, the association between Haar
detection reports and image metric reports is made for those objects passing their
respective prescribed Haar thresholds (previously described). The association
procedure followed was to use the Haar centroid, width, and height to define a search
region in which the. largest image metric value is selected for association with the
detected object Haar FOM. For the a ivriori analysis those objects passing their
respective image metric thresholds (previously described) were associated with Haar

detection reports by using the reported image metric centroid and the ground truth
width and height to define a search region in which the largest Haar FOM is selected

for association with the reported image metric value.

In any of these registration procedures, an undetermined error exists in fhe
associations made between detection reports and image metrics. However, because

different operators respond differently to a given object and its immediate
surroundings, a great deal of effort would be required to unambiguously associate
such reports in every instance. And since the search regions are limited by the

target size (directly or indirectly) it is not likely that the associations made are
between different objects.

5.1.6 Correlation Analysis Method

Kendall's test (Reference 7) was used to determine the correlation between image

metrics and Haar detection reports. Kendall's test uses rank order to determine

correlation. It is a distribution-free test. It was chosen because it does not require
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that a functional form (e.g., linear) relating the two variables be assumed. Kendall's

test was applied in the following way.

For a given data base of n associated pairs (u,v) where u is an image metric and v is

the HFOM value of either type of Haar detection, the set of u's is arranged in order of

increasing value. Each associated v is thereby put into a resultant order. If the

resultant order of v's is also strictly increasing, then Kendall's coefficient c of rank
correlation would be + 1. If the resultant ordering of v's was strictly decreasing, c
would be -1. And if the resultant ordering of the v's was totally random, meaning no

correlation, the expected value ofE is 0.

The value of Kendall'sc is determined by first computing two parameters, Tk and Ik,

for each vk, as ordered by the sort on Uk (where uk<Uk+ 1). Tk is defined for each vk

as the number of occurrences of vk <vy, where e> k. Likewise, Ik is defined as the

number of occurrences of vk > v?, where ?> k.

From the sets of Tk and Ik, the summary scores of

T= I T

and (5-4)

all k

are computed. From these, Kendall's - is determined.

T-I (5-S)
1

-- O(n- 1)
2

Kendall's T can be related to the more common correlation coefficient p. (See

Appendix G.)

So for each set of candidate image metric values and each set of corresponding Haar

detection FOM reports, a value for Kendall's c is obtained, as well as other associated

statistics for evaluating the confidence in the estimated values oft. This is done for

each condition, a priori and a posteriori. It was also done separately for targets and

non-targets, and for both raw and smoothed measurements. (The smoothed

measurements consisted of ,using all samples whose image metric was above a

variable threshold value UT and the average HFOM V of those samples.) Figures 10
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and 11 show examples of raw and smoothed measurements. Figure 12 provides a

simplified description of the entire process using pseudo code.

5.2 Results

We began our validation exercises with the Large Target Data Base, using all four

image metrics. A raw image from this data base (ERIM Frame No. 2007028),

corresponding ground truth, image signal quality maps, and corresponding HFOM

maps are shown in Figures 3 through 6 and 13 through 22. This was followed by

validation exercises with the Small Target Data Base.

Based upon these data, results were obtained and summarized in terms of an

estimate of Kendall's x, the 95% confidence interval C about the estimate, the

number of samples n, and a, the probability of obtaining the reported value of T if the

image metric and the Haar output were truly uncorrelated (a is rounded off to the

nearest one-hundredth). Appendix H provides a numerical example of how these

parameters are determined. The results are presented in Tables 6 through 15.

Except for the a priori correlations of TIR and CTRE with non-targets for the Small

Target Validation Data Base shown in Tables 14 and 15, all the available data were

utilized to compute the statistics shown in these tables. For the two exceptions cited,

the total number of non-target samples exceeded 8000. To pare down this number to

a reasonable yet representative sample set, 945 individual samples were selected

randomly and used for the correlation analysis.

With a view toward eliminating image metrics that do not correlate well with either

type of Haar output, TIRNEW is an apparent candidate for elimination. In Tables 8

and 9, TIRNEW shows a strong tendency to be uncorrelated with both Haar outputs

(large values of a and/or small values of r). Therefore TIRNEW was eliminated

immediately after the initial experiments with large targets. Upon consideration of

FLIR image phenomena, this is not unexpected. For example, a high contrast target

should be easily detected; however, TIRNEW may provide a low value if the target

region contains both target and background pixels since OT would be large.
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Figure'10. Example of Raw Measurements
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START
SELECT MODE (A PRIORI/A POSTERIORI)

SELECT IMAGE
SELECT IMAGE METRIC
SELECT HAAR PEIECTION LOGIC

IF MODE IS A PRIORI

GENERATE LIST OF OBJECTS WITH
LOW IMAGE METRIC THRESHOLD

COMPUTE HFOM FOR EACH OBJECT

COMPUTE KENDALL'S TAU FOR
RAW VALUES OF METRIC AND HFOM

COMPUTE KENDALL'S TAU FOP
SMOOTHED VALUES OF METRIC AND HFOM

ELSE IF MODE IS A POSTERIORI
GENERATE LIST OF HAAR DETECTIONS

FOR LOW THRESHOLD

COMPUTE IMAGE METRIC FOR
EACH OBJECT

COMPUTE KENDALL'S TAU FOR
AW VALUES

COMPUTE KENDALL'S TAU FOR

SMOOTHED VALUES

END IF

STOP

Figure 12. SIMPLIFIED PSEUDO CODE DESCRIBING PROCESS
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BS 768 A789-5

Figure 13. TIR NEW MAP (EXPONENTIAL SCALING)

B8 770 A789-6

Figure 14. POST-PROCESSED TIR NEW MAP
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B8 767 A789-7

Figure 15. CONTRAST MAP

B8 765 A78"-

Figure 16. POST-PROCESSED CONTRAST MAP
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38S774 A789-9

Figure 17. CTRE MAP

BS 772 A789-10

Figure 18. POST-PROCESSED CTRE MAP
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Figure 19. UNNORMALIZED HAAR FILTER MAP

S1 762 A789-12

Figure 20. DETECTIONS USING LOW PERCENTILE THRESHOLD
ON UNNORMAL'ZED HAAR MAP
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B3 718 A734-1

Figure 21. HAAR FIGURE OF MERIT (HFOM) MAP

BS 766 A78-14

Figure 22. DETECTIONS USING LOW THRESHOLD ON HFOM MAP
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Table 6. A POSTERIORI CORRELATION OF
CONTRAS'r WITH ATC HAAR FOM

Image
Data Obect MeasureB~~~seip • ,._n-_. .

Large targets Non-Targets Raw .21 (-.17,.64) 51 .01

Large Targets Non-Target Smooth .53 (.14,.77) 51 0

Large Targets Target Raw .29 (-.08,.58) 57 0

Large Targets Target Smooth .92 (.63,.98) 57 0

Table 7. A POSTERIORI CORRELATION OF
CONTRAST WITH HAAR FOM

Image
Data Object Measure
Base T

Large targets Non-Targets Raw .03 (-.37,.42) 42 .40

Large Targets Non-Target Smooth .41 (-.02,.71) 42 0
Large Targets Target Raw .31 (-.05,.60) 61 0
Large Targets Target Smooth .92 (-.65,.98) 61 0
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Table 8. A POSTERIORI CORRELATION OF
TIRNEW WITH ATC HAAR FOM

Image
Data O Measure
Base__.e . Type T c n _a

Large targets Non-Targets Raw .09 (-.28,.43) 53 .17

Large Targets Non-Target Smooth .26 (-.12,.58) 53 0

Large Targets Target "Raw -.23 (-.54,.13) 57 .99

Large Targets Target Smooth -.83 (-.95,.51) 57 1.00

Table 9. A POSTERIORI CORRELATION OF
TIRNEW WITH HAAR FOM

Image
Data Object Measure
Base Ty c n a

Large targets Non-Targets Raw -.075 (-.46,.33) 42 .76

Large Targets Non-Target Smoohi -.05 (-.35,.44) 42 .66

Large Targets Target Raw -.18 (-.49,.17) 61 .98

Large Targets Target Smooth -.82 (-.94,-.52) 61 1.00
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Table 10. A POSTERIORI CORRELATION OF
TIR WITH ATC HAAR FOM

Data Object MeasureBase.....•e Type T c n a

Large targets Non-Targets Raw .19 (-.19,.51) 53 .03

Large Targets Non-Target Smooth .43 (.05,.70) 53 0

Large Targets Target Raw .26 (-.10,.57) 57 0

Large Targets Target Smooth .91 (.42,.98) 57 0

Small Targets Non-Target Raw .12 (-.02,.24) 451 0

Small Targets Non-Target Smooth .92 (.88,.97) 451 0

Small Targets Target Raw .46 (.08,.73) 52 0

Small Targets Target Smooth .97 (.70,1.0) 52 0

Table 11. A POSTERIORI CORRELATION OF
TIR WITH HAAR FOM

Image
Data Object Measure
Base Tyre Type T c n a.

Large targets Non-Targets Raw .19 (-.23,.55) 42 0

Large Targets Non-Target Smooth .79 (.39,.94) 42 0

Large Targets Target Raw .28 (-.07,.57) 61 0

Large Targets Target Smooth .92 (.64,.98) 61 0

Small Targets Non-Target Raw .13 (-.02,.27) 325 0

Small Targets "Non-Target Smooth .86 (.76,.92) 325 0

Small Targets Target Raw .50 (.12,.75) 53 0

Small Targets Target Smooth .98 (.71,1.0) 53 0
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Table 12. A POSTERIORI CORRELATION OF
CTRE WITH ATC HAAR FOM

Image
Data Object MeasureBase Tvve Type c n _ a

Large targets Non-Targets Raw .28 (-.11,.60) 49 0

Large Targets Non-Target Smooth .30 (-.09,.62) 49 -0
Large Targets Target Raw .27 (-.09,.57) 57 0

Large Targets Target Smooth .92 (.64,98) 57 0

Small Targets Non-Target Raw .06 (-.06,.19) 452 .02

Small Targets Non-Target Smooth .91 (.84,95) 452 0
Small Targets Target Raw .42 (.03,.70) 52 0

Small Targets Target Smooth .92 (.62,.99) 52 0

Table .3. A POSTERIORI CORRELATION OF
CTRE WITH HAAR FOM

Image
Data Object Measure
Basee Type T c n a

Large targets Non-Targets Raw .32 (-.12,.65) 40 0

Large Targets Non-Target Smooth .89 (.52,.98) 40 0
Large Targets Target Raw .29 (-.07,.58) 61 0

Large Targets Target Smooth .92 (.65,.98) 61 0

Small Targets Non-Target Raw .14 (.02,28) 324 0

Small Targets Non-Target Smooth .87 (.77,.93) 324 0

Small Targets Target Raw .46 (.08,.72) 53 0

Small Targets Target Smooth .92 (.62,.98) 53 0
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Table 14. A PRIORI CORRELATION OF
TIR WITH HAAR FOM

Image Object Measure
Data Ojc esrBase T Tv.e _ c a a

Large targets Non-Targets Raw .19 (.05,.32) 409 0

Large Targets Non-Target Smooth .98 (.94,1.0) 409 0

Large Targets Target Paw .31 (-.05,.59) 62 0

Large Targets Target Smooth .92 (.65,98) 62 0

Small Targets Non-Target Raw .02 (-.06,.11) 945 .15

Small Targets Non-Target Smooth .78 (.72,83) 945 0

Small Targets Target Raw .33 (.08,.60) 73 0

Small Targets Target Smooth .96 (.75,1.0) 73 0

Table 15. A PRIORI CORRELATION OF
CTRE WITH HAAR FOM

Image
Data Object Measure
Base T Type T c n a

Large targets Non-Targets Raw .11 (.01,.21) 775 0

Large Targets Non-Target Smooth .97 (.93,99) 775 0

Large Targets Target Raw .29 k-.06,.58) 62 0

Large Targets Target Smooth .91 (.65,.98) 62 0

Small Targets Non-Target Raw -.02 (-.11,.06) 945 .84

Small Targets Non-Target Smooth .35 (.26,.43) 945 0

Small Targets Target Raw .35 (.03,.61) 74 0

. Small Targets Target Smooth .93 (.70,.99) 74 0
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Also, reviewing the results for the CONTRAST metric for large targets, a posteriori
condition, it appears that the values of E in Table 7 tend to be lower for non-targets
than are the corresponding values for TER and CTRE in Tables 11 and 13. Also the
value of a of 0.40 in Table 7 indicates some degree of uncorrelatedness with the Haar
FOM for non-targets. In addition, consideration of the fact that CONTRAST is not
independent of the FLIR gain determined that it too should be eliminated.

After eliminating TIRNEW and CONTRAST, only TIR and CTRE were kept to carry
out the remaining analyses. No significant differences in c or a are apparent in all of
the experiments performed. In fact, for both image metrics, all the smoothed target
results for - lie in the range of 0.91 to 0.98, an excellent correlation. Smoothed non-
target results for t lie in the range of 0.30 to 0.92. (If the anomalously low values oft
obtained for both TIR and CTRE against the same Haar outputs in Tables 10 and 12,
namely c = 0.43 and c = 0.30, were eliminated the range would become 0.79 to 0.92.)
Although the non-target correlations are not nearly as high as for targets, this result
is not totally unexpected since the Haar detector and the image metrics were
designed with targets in mind, whereas clutter (i.e., non-targets) can be quite varied
and therefore can produce quite varied responses to different operators that tend to
emphasize different types of image structure.

A strong positive correlation has been demonstrated for both TIR and CTRE, on the
one hand, versus both ATC Haar FOM and Haar FOM, on the other hand. Thus,
both TER and CTRE have been validated.

a
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6. CONCLUSIONS AND RECOMMENDATIONS

A number of approximations and constraints have been imposed on the data and

there is some degree of ambiguity in the registration process, as noted in the

discussion. However, it is expected that the effect of these imperfections on the
results of the validation exercise is not large and would not affect the general
conclusions reached regarding the validation of the TIR and CTRE metrics nor their

relative merit.

In general TIR correlated som ewhat better with Haar than dia CTRE. (The

alternate forms of TIR did not correlate well.) For correlations with targets only, the

average TIR correlation was 0.94; and the average CTRE correlation was 0.92. For

correlations against non-targets only, the average TIR correlation was 0.79; and the
average CTRE correlation was 0.72. On a single-experiment basis, the differences

between TIR and CTRE correlation values were not significant, except for one case.

If one had to make a choice between TIR and CTRE, TIR should be accepted,
primarily on the basis of lesser computational complexity.

As is evident from these correlation values, a useful relationship has been

demonstrated for both TIR and CTRE as both predictors and explainers of Haar

detection performance. The aggregate results do not appear to be very sensitive to

the precise shape and size of the operator masks used.

Based on these experiments, as well as prior work in this area, we expect that the

major objective of this effort has been achieved; namely, a means has been provided

and validated for quantitative measurement of signal quality (for both targets and
clutter) for use in ATR evaluation.

Recommendations for future work on image metrics that builds upon this effort, as
well as other related efforts are listed below: (1) To reduce the computational burden
of computing the TIR values over several masks for every pixel in an image,

investigations should be performed to determine the errors introduced through

various approaches for image subsampling; (2) To better determine the appropriate

mask dimensions for realistic sensors, investigations should be performed of the

two-dimensional target response to point spread functions, as well as to TIR masks;

(3) For purposes of comparative analysis, the convolutional TIR values used in this
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work should be compared with the wire-frame MR used by ERIM; and (4) For
evaluation of ATR classifiers new metrics need to be established and validated,
perhaps involving the number of resolution cells on target and some edge statistics.
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APPENDIX A

Estimate Of OB for TIR When Limited by Quantization Step Size

This appendix addresses the problem of determining TIR when oB is computed to be
zero. TIR is defined as:

: (A-1)
TIR - 1 T - PBI/OB

where PT is the computed mean of target window, PB is the computed mean of
background window, and oB is the coraputed standard deviation of the background.

The above definition of TER approaches infinity as OB approaches zero. In fact,

because the grey level values assume only discrete values, oB can equal zero.

The problem is to estimate the true value of GB when it is computed as zero. Due to

quantization error, this value should be within the range [0,1]. We are interested in
deriving the upper bound of aB because we want to have a conservative calculation of
TIR (a large value of GB gives a small value of TIR).

Denote 8 as the quantization step size, this quantization step size is related to the

number of bits used. Assume that within this quantization step, the background

grey level has a Gaussian distribution with mean pB and standard deviation OB. For
a Gaussian distribution, uB will be the largest if PB is at the center of the

quantization step. Assume that 99.73% of the population lies within this

quantization step, then:

3 0B-0.58  or OB=0.1 6 78 .

Alternatively, for a uniform distribution, we have: oB = 8/12 = 0.0838.

If we assume the variance follows a X2 distribution, then for a 99% confidence

interval, we have:
:,(n - 1)o 2 (n-l)0 2 (A-2)

B• ' 'o ! 5 a ! l a r g e n .
n-I + 2.57 V2(n--1) n-1-2.57V2(n- 1)
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0 o • - ,fo rsmaolln.X• X•

Typical values of the range of the estimate for oB are:

Population Confidence _Type of Range
nInterval M% Distribution

30 90 Gaussian [0.1357,0.2087]

50 Q9 , Gaussian [0.1352,0.2404]

100 99 Gaussian [0.1426,0.2092]

30 90 Uniform [0.0676,0.1039]

50 99 Uniform [0.0673,0.11971

100 99 Uniform [0.0710,0.1042]

From the above, we can take the conservative number (i.e., the largest number of oB)
for JB as 0.2404 or approximately 0.25 S.

I
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APPENDIX B

TIR as a Test for Zero Contrast

Below is derived a statistical test of the hypothesis of zero contrast between target

and background region (i.e., their means are equal) vs. the alternative hypothesis of
a non-zero contrast. What is of interest is that the derived test statistic is of a form
very similar to TIR. Thus TIR can be thought of as a test for non-zero contrast. In

deriving the test statistic it is assumed that the data are Gaussianly distributed.
However, it will be pointed out afterwkrdsi that the test is aymptotically distribution-

free under very general conditions (which always apply in the case of FLIR):

Let (xk,x2,...,Xn) be the pixels from the target and let (Yi,Y2,...,ym) be the pixels from

the background. Assume both sets of pixels are independently and identically drawn
from their respective Gaussian populations, with means and variances of(mt,vt) and

(mb,vb), respectively. Then, let zi = xi-yi. The average value of z, I, is l = k-3r. Since
zi is a I inear combination of uncorrelated data xi and yi, the variance of zi, var(zi), is

the sum of the two variances, var(xi) and var(yi). Thus, for z, we have var(2) -

var(R)/n + var(y)/m, also, 2 is Gaussianly distributed.

Thus under the null hypothesis of zero contrast (mt = mb), the probability that [i-

YI/IV(vt/n + vb/m) (note similarity to TIR) takes on a value greater than, say, t, is the

area under the standard normal curve to the left of-t plus the area under the curve to

the right of t. Therefore, a large value of k-'[/v/(vt/n + vb/m) is extremely unlikely
under the zero contrast hypothesis, and a large value will imply that the contrast

Imt-mbl, is greater than zero. Thus, large values of TIR imply low probability that
the contrast between target and background is zero.

Although the above derivation of TIR assumes Gaussian distributions for the two

sets of pixels, it can be shown that for any pair of distributions in which both random

variables are discrete and have a finite number of possible values, e.g., FLIR pixel

data, the quantity 1x-yl/(vt/n +vb/m) has a Student's t distribution, which becomes

Gaussianly distributed in the limit, as n and in approach infinity. Furthermore, the

Gaussian approximation to the Student's t distribution should be good even for fairly

small targets, e.g., greater than 100 pixels.
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To calculate the endpoints of a 100*(1-=)% confidence interval for the contrast Int-

mbl, first estimate the target population with the Tif inner box and the sample
estimates Xi and Si% for int and var(x); and likewise the outer box and X0 and S02 for
mb and var(y). Then in a table of standard normal deviates look up the value Z./
which satisfies the inequality, P(z>zj2) = a/2, and substitute it into the following
inequality,

- Z a;/ < ,, d (Mi - < Z oaR
,(S= S2

•/"A --°M

Now, solve for the left and right endjoints of the interval containing (mrt-mb); this
results in the following:

S 2 2 S' 2s-28-2

(Xi - xo) - Zen -- + -) <Mt - m) <(X - X) + Z,/( i + 0)

Since we are more interested in the absolute value of contrast than the signed
contrast, we derive from the above results the following inequalities for Imt-mbl:

I ~ V( )IR..x~x+zX. 2 -v +~(B-3)
L =(X-Xo) -zn ; + m, xn

n rn n i

min(IILI,IIRI)< Imt-mbI <max(IILIA,IRI).

Thus, we can say, with only a 100*z% probability of being wrong, that the true
contrast between the inner and outer boxes is in the above interval.

The role of the numbers of pixels in the two samples, n and m, in the above
inequality, are worth nothing. They demonstrate how any estimate based on

sampled data can only be known within certain bounds which are a function of the
true variance(s) of the sample(s) and the number of samples. As the number of
samples increases, the width of the confidence interval decreases and the accuracy of

the estimate increases.
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APPENDIX C

Sensitivity of TIR to Target Size Estimation Errors

Presented below is an analysis of the sensitivity of the Target-to-Interference Ratio
(TIR) image characterization metric to errors in defining the size and shape of a

target. A general case formula relating the impact of errors of assigning target
pixels to the background region and background pixels to the target region on the

estimated TIR is derived. A guard ring is not in the definition of TIR used in the
derivation; however, it will be cliar rroin the final formula what effect a guard ring
would have.

The TIR is shown to respond in a complex way to small errors (-W 10%) in defining the

target and background regions of the filter. The impact of this sensitivity on
algorithm evaluation tasks should be considered carefully.

Background

The TIR of a target is defined by

TIR = iPT- PBI/nB = I&AIa/oB (C-I)

where PT and PB are the means of the "target" pixels and the "background" pixels,
respectively,and OB is the standard deviation of the background region. The
definition of TIR depends on the definition of the procedure for designating which
pixels are target pixels and which are background pixels. Some suggestions made in

the past are:

(1) Let the target region be those pixels in the target's bounding box. Let the
background regions be those pixels in a concentric rectangle about the target.

(2) Let only those pixels that pass through a ray from the sensor to the physical
target be in the target region. Let the background pixels be defined as in (1)

above.

Appendix C 66



86Y061

(3) Let the target region be those pixels in a rectangle defined by the ezpected size
ofthe target, centered on the target. Let the backgound pizels be defined a in
(1).

The analysis below applies equally well to all three cses

Anal-vi8s

Notation: NT, number of pixels in the target region.
N8 , number ofpizels in background region,

PT, mean grey level of targetregion,
pb1, mean grey level of background region,
oT, standard deviation oftarget region grey levels,
aB, standard deviation ofbackground region grey levels.

One type of error is including target pixels in the background region. Let 100eTB be
the percentage of the NB pixels in the background region which actually belong to
the target. Also, let 100eBT be the percentage of the NT target region pixels which
actually belong to the background, which is the other type of error. Let the prime
notation () indicate the estimate of that quantity based on the way the pixels are

labelled (and mislabelled). For instance, P'T is the mean of the target region pixels,

including any errors in labelling. Then,

N~i Car)iT + Nyar)IJ7)a (e.p+.aC-2)
Nr

N (U -e#r)Ip'B N+(c.7 )P1r (C-3)
E(=e W r+ U1 -e(a) P8

~(I~ai) (1~T3~T~~(C-4)

Ths, the estimate of contrast E(I&p'l) is proportional to (and always less than) the

true contrast (IApi).
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Now, to compute E(O'B 2) let Zi be a pixel in the background region, let Yi be a pixel in
the background region that actually belongs to the target, and let Xi be a true

background pixel. Then

MB MT

NB (Z -E(11 8 ))2 = (Xi -E(ia)) 2 + (Y, - (C-5)
E(O"2)='7 - -E(B)) =,(C-5)

N N
i=1 B B

where MB = NB (1-eTB), MT = NB (eTB).

Then,
M B MT

(C. + p8 - E( ')) 2 + -E (ci+ 2 (C-6)
E(o '2 )=i=1 i=1

B2 
N8

MB MT

S(F.i + IB- (PB + 8B))2+ ( PT+Qi (PT + T))2 (C-7)E(cyB2)
NB

M B MT MT
~ 2 - +M&+ ct!2 -2 + M 8 2 (C-8)_28B 8 8T i T TE8., ) - =, ,-', Ni=1 i=1

B~N 8

where 8B = IE(p'B )- PBI, &r = IE(p'B)-PTI, Ci = Yi - PB, ai = Xi-PT.

Since the ci's are deviations of true background pixels about their mean pB, and since
the ai's are deviation of the true target pixels about their mean PT, the second and
fifth terms in the numerator are approximately zero and the first and fourth are

approximately the standard deviation of the true background pixels and true target

pixels, respectively.

Thus,

j Appendix C 68



86Y061

MUao +M 82 +MT,4 +M,, (C-9)

'2 B~le )2 2 N2 (1 -T)+ eBO+NB (eTB)& (C2

E(oB2) N
NNB

E( 2 IC"O2 + NTUs 2(+e 2 + e N8 2ea)

E(O ) --(1 --eTB)02 + (1B-eTa)8 + 7- eTB eT (C-1)

To simplify 8B, 8T, we have - - -

=B = IPB-E(p'B )i = PB- (1-eTB)PB-eTBPTI - eTBIAPI,

8T = IPT-E(Il'B)I= (1-eTB)IAPI.

Now,
E 2  2 + + eTB) (eTB) 2 (AP)2 + (I eTB) (eTB) 2 (AP)2  (C-12)E(o Q2 -e (I-)oa+(eC12

B TB B eTB)r4( - (e(-
e3t2( 2 _2 ) + (eTa- 2 )(AlP)2 (-3

'a 0 2+ eTB T 0'i (eT (C-13)E(o8 2) =B 0T 2 0 B TB

If we substitute E(IAp'I) and E(o'B 2) from Equations (C-4) and (C-13), respectively,
into the TIR definition, we have, after multiplying numerator and denominator by

(1/GB 2),

(Q -- e -e ) (TIR)2 (C-14)
E((TIR') ) _TB T

l+eTB (O7 /OB -- 1)+ (eTB - eTB)(TIR) 2

Examples

Equation (C-14) shows how errors in defining which pixels belong to the target and

which belong to the background affect the calculated value of TIR. For example, (A)
if the estimated target size exceeds the true target size by 10%, so that 10% of the
pixels in the target region actually are part of the background, then eBT = .1,
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eTB=0, andE ((TIR')2) = (l-eBT)2(TIR)2 = (.9)2 (TIR)2. So, if(TIR)2= 10.,then
E((TIR')2 ) = .81 (TIR)2, and E((TIR')2) = 8.1.Thus, the true (TIR)2 is

underestimated by 19%.

As another example, (B) suppose the estimate of the targets size falls short of the
true size by 10%, so that some target pixels are used in the background calculations.

Then, eTB = .1, eBT=0, and
E 2 (81)(TIR) 2  (.81)(TIR)2

02 -2 (C-15)

I + .1 L _ .1 +.09(TIR)2 .9+(.1)- + .09(TIR)2

B B

If OT = OB, then

E 2IR')2 (C81)(TIR)2  (C-16)

1+.09(TIR)2

Thus, if(TIR)2 = 10, then E((TIR')2) = 4.3. In this example, (TIR)2 is

underestimated by 67%.

Discussion

The relation between (TIR)2 and E((TIR')2) is fairly complicated, as can be seen in (C-
14). However, when eTB = 0 (i.e., when no target pixels contaminate the
background) then it simplifies to E((TIR')2) = (1-eBT)2 (TIR)2. On the other hand,
when target pixels do contaminate the background (eTB > 0), the ratio of target pixel
variance to background pixel variance become important, and the whole expression

(C-14) is complex. In either case, E((TIR')2) always underestimates (TIR)2.

Reviewing the examples above, we see that in (A) a target with (TIR)2 = 10 has
E((TIR')2) = 8.1 if the target size is overestimated by 10%, and in (B) that the same

target has a E((TIR')2) = 4.3 if its size is underestimated by 10%. Thus, in the first
case (TIR)2 is underestimated by 19%, while in the second case it is underestimated
by 67%. Thus, using TIR as defined in (1) to characterize target signatures is

asymmetrically sensitive to errors in underestimating target size vs. overestimating

target size.

Finally, the use of a guard ring must be considered. If the target size is estimated in

order to construct a TIR filter mask, a guard ring can be used to decrease the percent
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contamination of the target and background regions (eTB, eBT). However, if one does
not know the actual error in size estimation, one does not know how to construct a
guard ring that will effectively improve the TER.
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APPENDIX D

Robust TIR

All proposed definitions of TIR are functions in which the means and variances of the
inner and outer gate regions are free variables. Thus, TIR is always sensitive to

errors in estimating those variables. The idea of making TIR less sensitive to errors
of those kinds of errors, i.e., making TIR more robust, was considered. One approach
would be to replace the estimate of the mean with the estimate of the median and
replace the estimate of variance (meak bf squared deviations about the mean) with

the median of absolute deviations about the median (M.A.D.). For problems in which
the data can be modeled as having an asymmetrical probability distribution the
sample median is a less sensitive estimate of location than the sample mean.
However, since multimodal targets are an important type of target signature, and

since the median is not robust for multimodal data, this robust approach was
rejected. A second approach would be to directly estimate contrast using a robust
form of least squares estimation, and using the M.A.D. instead of the variance. That

approach would work well in that the TIR estimate of a target would not be biased

downward by another bright target in its background, and the TIR estimate of a
clutter object region would not be biased upward by a few noise spikes in the inner
box. However, it would always give low TIRs to the type of target signature

characterized by a few hot pixels on the target's engine and cold pixels on the
remainder of the target, and a cold, immediate background, because it would, in

effect, kick the bright pixels out of the calculation of the target's mean, thus making

the estimated contrast close to zero. Thus, this appproach was rejected. In summary,
no acceptable method of making TIR more robust was generated.
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APPENDIX E

ATC Firmware Version of the HAAR Detector

This appendix presents an overview of the Haar detector as it is implemented in the
firmware of the Automatic Target Cuer (ATC). Figure E- 1 is a flow diagram of the
detector including its preprocessing algorithms. As illustrated, prior to Haar
detection the image undergoes a 2:1 reduction along the row and column spaces
resulting in an image that is 1/4 the size of the original. The reduced image is then
passed through the appropriate ringecfependent, Haar mask, and pixel values are
hard limited to zero (positive clip). The resultant image is histograxnmed and a
global threshold is determined. After threshold application, the image is blurred
and colored. Estimates of the centroids and sizes of potential targets are then passed

r on to the segmentation module.

The Haar Mask. The function of any target detector is to locate and isolate regions of
interest within the scene so as to minimize the amount of data processing required
for silhouetting and classification. The Haar detector achieves this function by using
a finite impulse response (FIR matched filter. The expected target signature is a
contiguous target-sized area with similar grey levels called a "blob" or "spot." The
Haar matched filter is relatively large, especially at near ranges where the mask

p size can be 31 x 31. The resulting convolution process can monopolize system
resources and be the limiting factor of the system's processing bandwidth. Therefore
several modifications were incorporated to increase the hardware processing speed.
First, as previously stated, the image undergoes a 4:1 reduction in area. Second, tile
Haar filter was designed to be decomposable, allowing the mask to be broken down
into sub-masks whose non-zero coefficients are either plus or minus one. The
convolution process can now occur without the need of a time consuming
multiplication operation. Figure E-2 demonstrates how the ATO flirmware
generates an equivalent complex convolution through a series of simplified

convlutonsusing the sub-masks.

The current ATC implementation has incorporated range into the Haar detector,
utilizing four separate Haar convolutional masks designed to operate at ranges from
1 kmi to 8 kmi. A single mask is selected for each image, based on its
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range to center field of view (CFOV). The following section outlines the sequence of
algorithms used to post-process the filter output.

Histairram and Thresholdinff. In order to reduce the data bandwidth and extract
meaningful information from the Haar transformed image, a decision must be made.
This decision takes the form of a thresholding operation, yielding a binary resultant
image. The threshold is computed as a percentile of the Haar image histogram, see
Figure E-3. Determination of the threshold level is accomplished by down counting
the histogram memory address and simultaneously comparing the summation of the
stored frequency count to the desired percen-ile. The step-by-step outline for
threshold generation follows: - -

(1) Start at the right of the histogram (highest pixel grey levels) and proceed
to the left (lowest pixel grey levels). Count the number of pixels within
bin and add this to a running sum.

(2) If the running sum divided by the total number of pixels in the frame
equals or exceeds the given percentile then stop.

(3) Use the grey level associated with the current bin as the threshold.

* The percentile is predetermined and fixed for each range bin. It was designed to
yield a constant number of exceedences. The percentile is determined a D)riori as a
function of the expected number of targets and the nominally expected target size.
Typical percentile values are quite small and are usually specified to the nearest
0.01% (or, in fractional form, 1/10,000). For the ATC program, values of 16/10,000,
20/10,000, 30/10,000 and 30/10,000 were used for ranges 7km, 5km, 3 kin, and
1.5km, respectively.

Smear Filter. The binary image generated by the thresholding operation contains
points that have responded strongly to the Haar mask, indicating a relatively high
degree of "spot" feature activity. An unfortunate artifact of the Haar mask

convolution is the creation of sidelobes that, after thresholding, become separated
from the main lobe. This can occur when there is a mismatch between the Haar
mask size and target size, or if two or more targets are closely spaced. This results in
a single target giving rise to multiple responses at different image locations. To help
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ensure that disparate responses from a single target will be merged together, a 3 a 3
snmaring operator is employed on the binary image (corresponding to a 6x6 operator

on the original image). This simple blurring filter can be effected as an OR operation
or as a max filter (equivalent operations when operating on a binary image).

Colorina, After blurring the binary image, a coloring operation is performed. The

functions of the coloring process are to locate the centroid coordinates and to
estimate the size of each candidate target. Object coloring is performed across the
entire binary image plane based upon the 8 connectivity criterion. The coloring
mask is shown in Figure E-4 along with a flow chart indicating mask rules and
priorities. Figure E-5 contains a reptesentative example of the coloring operation
when applied to a binary image. The mask is convolved across the image, starting at
the upper left-hand comer, scans across until the first line is complete, then retraces

and scans the next line until the last line is completed. When the coloring mask is
positioned over the pixel containing the first dot (binary 1), that pixel will be
identified as belonging to cluster number 1. As the mask is slid across each line, the
clusters will be numbered sequentially until mask element w, a, b, or c is positioned
on a previously numbered cluster. If this occurs, a priority logic is invoked and the
pixel is assigned the same cluster number as its highest priority neighbor. The

example in Figure E-5 shows two pixels where conflicts occur (highlighted pixels)
but are resolved by the priority logic.

After the convolutional process is completed and the conflicts resolved, the sizes and
locations of the clusters are computed. This is accomplished by finding the

maximum and minimum X and Y excursions of each cluster and performing a simple

centroiding operation, respectively. The extraction of the position and size data
concludes the postprocessing operation and marks the end of the detection (region of
interest) process.
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APPENDIX F

HAAR Figure of Merit

This appendix is a mathematical description of the Haar Figure of Merit (HFOM) as
well as a brief overview of its functions and uses. The Automatic Target Cuer (ATC)
simulation now uses the HFOM to quantify target detectability over the Haar
transformed imag. This metric can be used to attach a measure of detection
confidence to each candidate tarpt or as a discrimination variable.

The functional basis of the HFOM is the crons correlation operator. This type of
operation is used extensively in image processing for tracking, registration, and
template matching. The HFOM uses a HAAR mask as the reference template. The
resulting croes correlation coefficient is now a normalized version of the Haar
matched filter output. This normalization process enables the HFOM response to be

gain ad bias invariant. Its values range between plus and minus one and relate
how well the Haar reference template matches various areas of the image. A value
of +1 indicates perfect correlation, implying the highest possible detection

confidence. A value of 0 (or less) indicates no (or negative) correlation and is a firm
basis for rejection as a possible detection. The following compares the conventional
Haur filtering process and the Haar Figure of Merit.

The Haar filter output is defined to be:

i,) = " •" (MekA (n,,)OsIMe(i+ -,j+ a)i (F-1)
U Rt

where

i,j - Row and column coordinates of the center of the mask in
image coordinates

nm = Row and column coordinates of the Haar mask in mask
coordinates
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Mask = Haar mask

Image = Input image

The Haar Figure of Merit is defined to be:

HFOM(i,) = [ [Mask (m,n).(Image(i+m,j+n) - po)] (F-2)
2 2*S,, . ~~(, o ,,a

m n %

where

L 7. 1Image(i+m,j+n) (F-3)
nZ n

2= [Image(i+m,j+n) -- ]2 (F-4)

a= CONSTANT= • [Haar(m,n)12  (F-5)

,Jim
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APPENDIX G

Relationship Between Kendall's r and the Sample Correlation Coefficient

The following equation is easily recognized as the formula for rs, the sample
correlation coefficient,

I (i - )(yG --y)

The formula for rs can be considered as a special case of the more general correlation
measure, r, where r is defined*

a.. b..

r -- (G-2)

where aij and bj are functions of(xi,xj) and (yi,yj) that replace and augment the
original xi and yi data points. (r, is derived from r by letting agj = 0 if i P j, and xi-x
if i =j, and similarly for the bij and yi.) It can be shown that r always lies in the
interval [-1,1] no matter what the values of aj and bij (the Schwarz Inequality), with
r = 1 when the a and b vectors are identical and r = -1 when the a vector is -1 times

the b vector. The purpose in generalizing the correlation coefficient is to consider
alternative measures of correlation and evaluate the trade-offs between different
formulations to choose the method which best suits the application.

One very useful generalization is to let aU and bij be functions of the relative rank

values ofx's and y's, i.e., ai = 1 ifxi < xj, let aU = 0 ifxi = xj, and let aij = -ifxi >
xj. If we first rearrange the y's to be strictly increasing, that is

Yi < j, forj > i, (G-3)

and let the associated x's take on the resultant ordering, then if we limit the
calculations to j > i we have

E a.V b.. Ea .. el (G-4)

F- V)q,

*Kendall, M. G., Rank Correlation Methods Charles Griffin Co. Ltd., London,

1962.
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So = - (G-S)

aj+ %+ aj(G-6)
X. <X X. = X. X>X.

or = ' ' /

X.•X. X.= 2

In terms of Kendall's parameters, this becomes

T+0 -I
r --. (G-7)

TN(N-I )* IN(N-I '

or r T-1 - T. (G-8)

2
Both T and rs are measures of correlatedness. (In fact, it can be shown that, for the

case where the x's and y's have Gaussian distributions, E(T) = (2/n) sin-Irs.)

However, tests for significant values of r. depend on the assumption that the x's and

y's are Gaussianly distributed, whereas tests based on u do not depend on the

underlying distributions of the x's and y's for evaluation of significance.
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APPENDIX H

Numerical Example of Kendall's - and Associated Parameters

The following is a numerical example of how Kendall's c and associated parameters
are determined. The data used are the same as those used to produce the results in
the last row of Table 10 in the main body of this report. Table H-1 lists the data.
Four quantities are calculated for these data: Kendall's T; the upper and lower
bounds, cu and -q, of a 95% confidence interval containing x; and O, the probability
under the null hypothesis of obtaining a value as large as x. 'the International
Mathematics and Statistics Library (IMSL) subroutine NMKN was used in
computing T and a.

Calculation oft

In Section 5.1.6 of the main body of this report Kendall's c was defined as the ratio of
(T-I) to n (n-1)/2, where T is the number of data point pairs exhibiting positive
monotonicity, I is the number of data point pairs exhibiting negative monotonicity,

and n is the number of data points. For this data set, T-I = 1292 and n = 52, so t =

0.974359.

Calculation of Confidence Interval

The formula for the endpoints of a 95% confidence interval for c is (Kendall, 1962)

Sv',-/n (H-1)

I + 2 z(Hl

1•+ ' 2%/2/n V'1 + Z2ln.- (H-2)

I + 2zl/n
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where z is the value of a standard normal variable (with zero mean and unit
variance) such that the area to the right of z under the standard normal curve is

0.025. For this data set, and for a 95% confidence interval, ql = .700, Eu = .998

Calculation of c

The distribution of (T-I)/VVarT-I), under the hypothesis data that the data exhibit

no correlation, is approximately normally distributed with zero mean and unit
variance for n greater than 7 (Kendall, 1962). The formula for Var (T-I), when there

are no ties in the data (as is the case with the data in Table 1), is

Var(T-I) = n(n-1)(2n + 5)/18. (Kendall, 1962)

(Kendall also provides the formula for the case of ties). For the given data set, n =

52, Var(T-I) = 16,060, so under the hypothesis of no correlation,

( T - 1 1292 •=1,0/ 2A

V'Va r (T-f) - (1 6,0 6 0

TABLE H-1. Integral Measure Data for TIR on Small Target Image Set

DATA POINT AVERAGE TIR HAAR FOM

1 6.159593 0.5614600
2 5.469493 0.5391429
3 2.219200 0.4323732

4 12.35137 0.6026000
5 3.243192 0.4773111

6 2.222797 0.4323350

7 2.374016 0.4340539

8 4.187746 0.5272800

9 2.850844 0.4519967
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DATA POINT AVE'DAGE TER HAAR FOM

10 3.439575 0.4838438
11 3.070657 0.4630913
12 4.057651 0.5072364
13 2.888486 0.4571069
14 2.960361 0.4556424
15 3.103345 0.4664000
16 7.193048 0.5782000
17 3.054875 0.4597251
18 -3.148121 0.4903857
19 10.75095 0.6036000
20 3.143448 0.4735286
21 5.776412 0.5436667
22 3.225395 0.4710947
23 3.887485 0.4954538
24 2.160655 0.4295143
25 7.139445 0.5652000
26 2.125995 0.4270907
27 2.493509 0.4388676
28 -0.9968202 0.4125404
29 2.686939 0.4494876
30 2.540206 0.446797 1
31 1.276870 0.4161980
32 1.754863 0.4214500
33 1.321635 0.4203938
34 3.289654 0.4718824
35, 2.537872 0.4445744I36 ~ 5.455533 0.5450125

37 3.689721 0.4859934
311 2.958680 0.4556778
39 2.533487 0.4409723
41) 4.497394 0.5443000
41. 2.615864 0.4480183
42 2.030863 0.4246614
43 1.308730 0.4187021
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DATAPOINT AVERAGETIR HAARFOM

44 1.030863 0.4142040
45 2.399988 0.4353869

46 1.766195 0.4242601
47 1.597554 0.4227596
48 3.016114 0.4580561
49 3.991664 0.5002417
50 2.831542 0.4504904
51 3M45221 0.4709350
52 2.918194 0.4560429

Kendall, M. G., Rank Correlation Methods, Charles Griffin Co. Ltd., London, 1962.
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